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Abstract
Current response in coupling chains under a dc–ac electric field and a uniform
magnetic field is investigated. For a special case of extremely low coupling
between chains, simple and physically explicit analytical current expressions
are derived, from which the field dependence of some physical properties can
be clearly seen.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ever since the pioneering work of Esaki and Tsu [1], which opened up a novel field of
rich physics and potential device applications of semiconductor superlattices, these synthetic
nanostructures have remained a focus of intensive research. A variety of very interesting
phenomena, including Bloch oscillations [2], Wannier–Stark ladders [3], and Landau–
Zener tunnelling [4], have been observed in high-quality superlattices [5, 6], optical ring
resonators [7], and more recently for ultracold atoms in accelerating optical potentials [8], to
mention but a few. With the addition of a strong ac field, a number of interesting effects have
been predicted, such as dynamical localization [9], band collapse [10], and fractional Wannier–
Stark ladders [11]. In recent years, there has been much intensive investigation of the effect
of external electric and/or magnetic field(s) on various properties of charged particles in low-
dimensional lattices [13], especially coupling chains and ladder compounds [12]. Zhang and
Jing [14] proposed a ladder system (coupled chains; see figure 1) with a uniform magnetic field
applied perpendicularly to it. Using a Green function method, they obtained the wavefunctions
for both the case of perfect chains and that of imperfect chains, from which properties such as
the phase boundary and current vortex structure of the localized condensation were obtained.
Michael Creutz [15] has developed a ladder compound which consists of two coupled chains
(a ladder), and obtained a lot of exciting results. Generally speaking, the two-dimensional
lattices can only be studied numerically. However, for the case of coupled chains (a ladder) the
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Figure 1. A tight-binding electron on coupled chains in a uniform electric field �E and a uniform
magnetic field �H . �A is the vector potential.

problem can be solved analytically [14,15]. Nevertheless, up to now, no investigation of carrier
transport properties of this model, with driving by a dc–ac electric field and a uniform magnetic
field, with the help of Boltzmann’s equation at finite temperatures has been performed. In this
letter, we communicate our findings on this matter. For the special case of extremely low
coupling between the chains, we find simple and physically explicit analytical expressions for
the long-time average current of the system. Our results shows clearly that for the limit of
extremely low coupling, a magnetic field can smear the Esaki–Tsu peak under some conditions.
From the analytical expressions and numerical calculation of the long-time average current of
this model, we find that when the ratio edE/h̄ωac are the roots for the Bessel function J0 (e is
the electronic charge, d is the lattice constant, and J0 is the Bessel function of order zero), the
electron motion will have a tendency towards localization.

2. Hamiltonian

We start with a spinless electron on the basic structure in the presence of a perpendicular
magnetic field as shown in figure 1. All horizontal bonds are of equal strength, given by the
hopping parameter V . For vertical bonds, the coupling is V0. Applying a perpendicular
magnetic field induces phases when a particle hops around closed loops. Adopting the
convention of placing these factors on the upper and lower horizontal bonds, we assume
that these parameters are positive. Thus, the system Hamiltonian [15] is

H = −
∑
n,α

[V0|n, α〉〈n,−α| + V (eiαγ/2|n, α〉〈n + 1, α| + e−iαγ/2|n + 1, α〉〈n, α|)]. (1)

The value of γ is determined by the magnetic field through the relation γ = 2πφ/φ0,
where φ0 is the flux quantum (hc/e) and φ is the flux passing through a unit cell. A general
one-particle state is (henceforth we set h̄ = 1 and the lattice constant d = 1)

|�〉 =
∑
m,α

Cm,α|m,α〉 =
∑
k

Ck,α|k, α〉 (2)

where Ck,α = ∑
m eimkCm,α . For an infinite chain, this model is easily solved via Fourier

transformation. Thus, the system’s Hamiltonian in k-space is

H = −
∫ 2π

0

dk

2π

(
2V cos(k − γ /2) V0

V0 2V cos(k + γ /2)

)
|k, α〉〈k, α| (3)

and the energy eigenvalues are

ε±(k) = −2V cos(k) cos(γ /2) ±
√

4V 2 sin2(k) sin2(γ /2) + V 2
0 . (4)

From the above equation, we can first calculate the macroscopic-average velocity of the Bloch
electron, and determine the distribution f (t) with the help of both the Boltzmann equation and
the equilibrium distribution f0; finally, we obtain the expressions for currents in the system.
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For convenience in our investigation, we can divide the strength of coupling between
chains into three classes: weak, intermediate, and strong coupling. For the first case we can
deal with the weak coupling between chains as a small perturbation for the upper and low chains
respectively. For the third case the strong-coupling chains can be reasonably taken as a new
single chain in which every new site is a pair consisting of an upper site and a corresponding
low site. With the help of well-known results on the single chain, we can fully investigate
these two cases. For the second case it is difficult to find a suitable analytical method. To set
a reference frame for later discussions, let us limit our investigation to the first case. There
are two reasons for doing this: one is that this case can be considered analytically; the other
(very important) is that this case is close to the situation for real coupling chains commonly
encountered. Let us first look at the transient currents of the system.

2.1. Transient currents

The macroscopic-average state may be specified by a distribution function f s(t) that should
satisfy the Boltzmann equation

∂f s(k, t)

∂t
+ eE(t)

∂f s(k, t)

∂k
= St (f s(k, t)), (5)

whereE(t) is the dc–ac electric field, and s = ± correspond to ε±(k) respectively. St (f s(k, t))

denotes the collision integral. For the simplicity, the collision integral can be put into the
form [16]

St (f s(k, t)) = −νie(f
s(k, t) − f s

0 ) − νe(f
s(k, t) − f s(−k, t)), (6)

where f0 is the equilibrium distribution function, and νie and νe are the relaxation frequency
of the energy and the frequency of elastic collisions respectively. Due to the periodicity
of the energy spectrum, we can transform the Boltzmann equation (BE) in k-space into
the BE expression in real space by using f s(k, t) = ∑

n f
s
n (t)e

ink , where f s
n (t) =∫ 2π

0 (dk/2π) f s(k, t)e−ink . Thus, the Fourier transforms f s
n (t) satisfy the following equations:

df s
n (t)

dt
+ ineE(t)f s

n (t) = −vie(f
s
n (t) − f s

0,n), (7)

where

f s
0,n =

∫ 2π
0 dk exp(−βεs(k)) cos(nk)∫ 2π

0 dk exp(−βε+(k)) +
∫ 2π

0 dk exp(−βε−(k))
(8)

are Fourier transforms of the Boltzmann equilibrium distribution function f s
0 .

For the sake of simplicity, we first focus on the case of νe = 0 in this letter. Clearly,
equation (7) can be solved exactly. If a dc–ac field E(t) = E0 + E1 cos(ωt) is applied to the
coupling chains at t = 0, the solutions of equation (7) read

f s
n (t) = exp(−viet − inA(t))

∫ t

0
dt ′vief s

0,n exp(viet
′ + inA(t ′)), (9)

where

A(t) = e

∫ t

0
dt ′ E(t ′) = ωBt +

eE1

ω
sin(ωt), ωB = eE0. (10)

From equation (4) we can calculate the electron’s quasi-classical velocity from v(k) =
∂ε(k)/∂k. Hence, the current density is written as

j s(t) =
∫ 2π

0
ev(k)f s(k, t) dk, (11)

and then the total transient current is
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j (t) =
∑
s

j s(t) =
∑
s

e

∫ 2π

0
v(k)f s(k, t) dk = j s

a (t) + j s
b (t) (12)

where

j s
a (t) = i 2πeV cos(γ /2)(f s

1 (t) − f s
−1(t)) = −4πeV cos(γ /2) Im(f s

1 (t)), (13)

j s
b (t) = se

∫ 2π

0

(
2V 2 sin2(γ /2) sin(2k)√

4V 2 sin2(γ /2) sin2(k) + V 2
0

)
f s(k, t) dk. (14)

The general case of the system current j s
b (t) can hardly be considered analytically, because

this current j s
b (t) has a very complex expression. Fortunately, we can investigate analytically

the special case of extremely weak coupling (V0 	 V ), which is commonly encountered in
real coupling chains. In the weak-coupling approximation, i.e., V0 	 V , the current j s

b (t) has
a very simple expression. In this case, the transient current j s

b (t) and j s(t) = j s
a (t)+ j s

b (t) can
be rewritten as

j s
b (t) = e

∫ 2π

0

(
∂

∂k
s(2V sin(k) sin(γ /2))

)
f s(k, t) dk = s 4πeV sin(γ /2)Re(f s

1 (t)), (15)

and

j s
a (t) = −4πeV cos(γ /2) Im(f s

1 (t)). (16)

The transient current j s(t) of the system reads

j s(t) = j s
a (t) + j s

b (t) = −4πeV cos(γ /2) Im(f s
1 (t)) + s 4πeV sin(γ /2)Re(f s

1 (t)), (17)

and the total transient current j (t) of the system is

j (t) =
∑
s

j s(t).

From the experimental viewpoint, the physical current observable in experiment is the long-
time average current instead of the transient current. Therefore, we focus our attention on the
long-time average current of the system in the following discussion.

2.2. Long-time average currents (V0 	 V )

Once the transient current j (t) has been obtained, the long-time average current of the system
can be calculated easily by using the relation j = 〈j (t)〉 = limT→∞(1/T )

∫ T

0 dt j (t). Using
the relation of f s

−n = (f s
n )

∗ which can be obtained from (9), we can simplify the current j s(t)

expression to the following form:

j s(t) = − cos(γ /2) Im(f s
1 ) + s sin(γ /2)Re(f s

1 ), (18)

j s = 〈j s(t)〉 = 4πeV
∑
l

f s
01J

2
l (eE1/ω)

ωτ(ωB/ω − l) cos(γ /2) + s sin(γ /2)

(ωτ)2(ωB/ω − l)2 + 1
, (19)

where Jl is the ordinary Bessel function and τ = 1/vie. Finally, the long-time average current
j is

j/j0 =
∑
s

+∞∑
l=−∞

f s
0,1J

2
l (eE1/ω)

ωτ(ωB/ω − l) cos(γ /2) + s sin(γ /2)

(ωτ)2(ωB/ω − l)2 + 1

=
+∞∑

l=−∞
J 2
l

(f +
0,1 + f −

0,1)ωτ(ωB/ω − l) cos(γ /2) + (f +
0,1 − f −

0,1) sin(γ /2)

(ωτ)2(ωB/ω − l)2 + 1
, (20)

where j0 = 4πeV .
Equations (4), (8), (9), and (20) are the central results of this letter; in these, the field

dependence of some physical properties can be clearly seen. In the next section we elucidate
the relation of the long-time average currents to the system’s parameters.
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Figure 2. The magnetic effect on the long-time average current j/j0 for the case of weak coupling
between chains (V/ω = 1.0, V0/ω = 0.1). The parameters are eE1/ω = 1.0, υie/ω = 0.1,
βω = 1.5, and γ = 0.0, 2π/5, 4π/5, and 8π/5.

3. Results and discussion

At the outset, we would like to note that the system current consists of an upper current and
a lower current corresponding to the upper energy state (ε+) and lower energy state (ε−)
respectively. The two currents are not independent due to the system’s distribution (8). Thus,
we can change the strength of the coupling between the chains to control the current of the
coupled-chain system. We would also like to note that we have to set our temperature parameter
as room temperature, because we employed the Boltzmann distribution in our discussion. If
we chose low temperature, for example T < 20 K, we would have to employ the Fermi–Dirac
distribution in the discussion. Now, let us consider the case of the effect of an abruptly applied
field E(t) = E0 + E1 cos(ωt) on the coupling chains (V0 	 V ) at t = 0 under the above
assumption.

To illustrate the phenomena fully in this case, and as a first step, we shall investigate
the magnetic effect on the long-time average current in a system of weakly coupling chains.
Figure 2 displays an example for eE1/ω = 0.8, where the coupling parameters areV0/ω = 0.1,
V/ω = 1.0, the inelastic scattering frequency is υie/ω = 0.1, the temperature parameter is
βω = 1.0, and the magnetic parameters are γ = 0.0, 2π/5, 4π/5, π , 6π/5, and 8π/5.
From the figures, we can see that the Esaki–Tsu and integer peaks appear, just as for the
single chain, near the positions of ωB/ω = 1 and 2. However, the fractional peaks which
appear for the single chain disappear. This phenomenon can be understood from observing
the curve in the figure for γ = 0.0: we can see that it is unaffected by the magnetic field.
Another remarkable thing is that if we increase the value of γ from 0 to π , the Esaki–Tsu
peak and integer peaks become lower and lower, and actually disappear if γ = π ; and if
we go on increasing the value of γ from π to 2π , the Esaki–Tsu peak and integral peaks
emerge again, but in the negative direction. In short, a magnetic field can totally smear both
the Esaki–Tsu peak and the integer peaks. Magnetic field is not one of the factors that smear
the fractional peaks.
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Figure 3. The magnetic effect on the long-time average current j/j0 for the case of weak coupling
between chains (V/ω = 1.0, V0/ω = 0.1). The parameters are eE1/ω = 1.0, υie/ω = 0.1,
βω = 1.5, and γ = 0.0, 2π/5, 4π/5, and 8π/5.

Second, we observe the ac electric field effect on the long-time average current in the
weak-coupling approximation. Figure 3 shows the case for magnetic parameter γ = 2π/5,
where the other parameters are υie/ω = 0.1, V/ω = 1.0, V0/ω = 0.1, and βω = 1.0.
We can note that with increasing eE1/ω the Esaki–Tsu peak becomes lower and lower; in
the meantime, the integral peaks emerge gradually. From the figures, we also note that the
bigger the value of eE1/ω, the stronger the effect of a dc–ac electric field on the Esaki–
Tsu peak. From the findings for eE1/ω = 0.0, one can note that a dc–ac electric field
is also not a factor that smears the fractional peaks. But if we choose eE1/ω = 2.405
or 5.5201, the Esaki–Tsu peaks almost disappear and small integer peaks emerge, as
illustrated in figure 3. If eE1/ω = 3.8317, the electric fields can smear the first integer
peak, as shown in figure 4. These findings are just a manifestation of a tendency towards
localization [9].

Finally, figures 2–4 show that the fractional peaks, which appear for the single chain,
disappear due to the coupling between chains rather than because of the application of a
uniform magnetic field or a dc–ac electric field. Furthermore, the most remarkable thing
is that the total current of the coupling chains is negative when ωB/ω = 0.0 (i.e., in the
absence of a static electric field), and the magnitude of the current is dependent on γ . The
reason for this, we think, is that a magnetic field can vary the system’s energy spectrum,
which determines the distribution of electrons in the coupling chains, and thus change the
magnitudes of the upper and lower currents corresponding to the upper energy (ε+) and lower
energy (ε−) of the coupling chains, consequently leading to a negative value of the total current
of the system.

4. Conclusions

In conclusion, within a simple model of a tight-binding Bloch electron on coupled chains under
the influence of both a uniform magnetic field and a dc–ac electric field, we have studied the
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Figure 4. The magnetic effect on the long-time average current j/j0 for the case of weak coupling
between chains (V/ω = 1.0, V0/ω = 0.1). The parameters are eE1/ω = 1.0, υie/ω = 0.1,
βω = 1.5, and γ = 0.0, 2π/5, 4π/5, and 8π/5.

electric current response of the system. We have shown the variation in height of these peaks,
as well as in the total-current magnitude with temperature and with the various parameters
of the theory, including the magnetic and dc–ac electric fields. Our results show that we can
control the Esaki–Tsu peak by changing the magnetic flux per cell. This can be realized in
practice using a dimerized semiconductor superlattice by, for example, inserting a ‘coupling’
semiconductor layer into the two semiconductor superlattices. Adjusting the thickness of the
‘coupling’ layer, one could test the predictions of this letter for this system by varying the
external uniform magnetic and dc–ac electric field.

We would like to thank Dr Wei Zhang, Dr Suqing Duan and Dr Ying Luo for many fruitful
discussions. This work was supported in part by the National Natural Science Foundation of
China under grants No 19725417 and No 10174095, the National PAN-DENG Project under
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